Sách đại số/Toán dải số đại số

Từ testwiki
Phiên bản vào lúc 17:41, ngày 10 tháng 1 năm 2023 của 69.165.131.31 (thảo luận) (Dạng tổng quát)
(khác) ← Phiên bản cũ | Phiên bản mới nhất (khác) | Phiên bản mới → (khác)
Bước tới điều hướng Bước tới tìm kiếm

Tổng chuổi số cấp số cộng

Dạng tổng quát

a+(a+d)+(a+2d)+...+[a+(n1)d]=k=0[a+(n1)d]

Chứng minh

k=0[a+(n1)d]=a+(a+d)+(a+2d)+...+[a+(n1)d]=n2(2a+(n1)d)
S=a+(a+d)+(a+2d)+...+[a+(n1)d]
S=[a+(n1)d]+...+(n1)d]+a
2S=[2a+(n1)d]n
S=[2a+(n1)d]n2

Thí dụ

Dải số cấp số cộng có dạng tổng quát

1,2,3,...9

Tổng số của dải số

1+2+3+4+5+...9=50

Cách giải

S=(1+9)+(2+8)+(3+7)+(4+6)+(5+5)=10(5)=50

Tổng chuổi số cấp số nhân

Dạng tổng quát

a+ar+ar2+ar3+ar4++arn=k=0(ark)

Chứng minh

k=0(ark)=a+ar+ar2+ar3+ar4++arn=a(1rn)1r
S=a+ar+ar2+ar3+...+arn1
rS=ar+ar2+ar3+ar4+...+arn
SrS=aarn
S=a(1rn)1r
S=a1r với n<1

Thí dụ

1+1.1+1.12+1.13=4
1+1.2+1.22+1.23=1+2+4+8=15

Tổng chuổi số Pascal

Công thức tổng quát lũy thừa n của một tổng

(x+y)n=r=0n(nr)xrynr
(x+y)n=(n0)x0yn+(n1)x1yn1+(n2)x2yn2++(nn2)xn2y2+(nn1)xn1y1+(nn)xny0
(x+y)n=yn+nxyn1+(n2)x2yn2++(nn2)xn2y2+nxn1y+xn

Với

(nr)=n!r!(nr)!

Thí dụ

(x+1)1= 1x+1
(x+1)2= 1x2+2x+1
(x+1)3= 1x3+3x2+3x+1
(x+1)4= 1x4+4x3+6x2+4x+1
(x+1)5= 1x5+5x4+10x3+10x2+5x+1


Từ trên , ta thấy hằng số trước biến số x tạo hình tam giác Pascal dưới đây


                                     1     1
                                  1     2     1
                               1     3     3     1
                            1     4     6     4     1
                         1     5     10    10    5     1
                      1     6     15    20    15    6     1
                   1     7     21    35    35    21    7     1
                1     8     28    56    70    56    28    8     1
             1     9     36    84    126   126   84    36    9     1
          1     10    45    120   210   252   210   120   45    10    1
       1      11    55    165   330   462   462   330   165   55   11     1

Tổng chuổi số Taylor

Dạng tổng quát

f(a)+f(a)1!(xa)+f(a)2!(xa)2+f(a)3!(xa)3+=n=0f(n)(a)n!(xa)n

Thí dụ

Tổng dải số Fourier

Dạng tổng quát

Tổng chuổi số Fourier đại diện cho tổng chuổi số hàm số sóng sine

sN(x)=A02+n=1NAnsin(2πnxP+ϕn),for integer N  1.

Thí dụ

Công thức tổng dải số

k=0nc=nc where c is some constant.
k=0nk=n(n+1)2
k=0nk2=n(n+1)(2n+1)6
k=0nk3=n2(n+1)24
n=0xnn!=1+x+x22!+x33!+x44!+=ex
n=1(1)n+1nxn=xx22+x33x44+=ln(1+x) for |x|<1
n=0(1)n(2n)!x2n=1x22!+x44!=cos(x) for all x