Khác biệt giữa bản sửa đổi của “Sách toán/Kết hợp theo thứ tự”
Bước tới điều hướng
Bước tới tìm kiếm
Tạo trang mới với nội dung “== Combinations == A combination is essentially a subset. It is like a permutation, except with no regard to order. Suppose we have a set of <math>n</math> elements and take <math>r</math> elements. The number of possible combinations is <math>\frac{_nP_r}{r!} = \frac{n!}{r! \times (n-r)!} = _nC_r = \displaystyle {n \choose r}</math>. Note also that <math>\sum_{r=0}^k \displaystyle{m \choose r} \times \displaystyle{n \choose k-r} = \displaystyle{m+n…” |
(Không có sự khác biệt)
|
Bản mới nhất lúc 16:33, ngày 31 tháng 7 năm 2023
Combinations
A combination is essentially a subset. It is like a permutation, except with no regard to order. Suppose we have a set of elements and take elements. The number of possible combinations is .
Note also that
Combinations are found in binomial expansion. Consider the following binomial expansions:
As you may have noticed from the above, for any positive integer ,
Another observation from the above is known as Pascal's law. It states that
This allows us to construct Pascal's triangle, which is useful for determining combinations: